Kayhan Batmanghelich

Assistant Professor
Department of Biomedical Informatics
 
Room 531
5607 Baum Blvd, Suite 500
Pittsburgh, PA 15206-3701
Phone: 412-648-9037
Admin Support: Noreen Doloughty

    GitHub    LinkedIn   Twitter   GoogleScholar

I am an Assistant Professor of Department of Biomedical Informatics and Intelligent Systems Program with secondary appointments in the Computer Science and Electrical Engineering Departments at the University of Pittsburgh and an adjunct faculty in the Machine Learning Department at the Carnegie Mellon University. My research is at the intersection of medical vision (medical image analysis), machine learning, and bioinformatics. I develop algorithms to analyze and understand medical image along with genetic data and other electrical health records such as the clinical report. For example, we are developing a probabilistic model to extract information from brain images (Magnetic Resonance Images) of patients with Alzheimer's disease and relate them the underlying genetic markers involved in the disease. We are interested in method development as well as translational clinical problems because after all, exciting research directions are coming from real applications. Read More

News

11/11/19: Two papers (#1, #2) are accepted to AAAI 2020! Big congrats to Junxiang Chen, Yanwu Xu, and Mingming Gong!
10/02/19: Excited to give a talk about our recent NeurIPS paper at SAP Research Retreat!
09/04/19: Our manuscript is accepted to NeurIPS 2019 (Spotlight 2.4%)! Big congrats to Mingming and Yanwu! The code is in this repo.
02/12/19: First BatmanLab alumni! Congratulation to Mingming for accepting a new position as a lecturer (Assistant Professor) at the School of Mathematics and Statistics at the University of Melbourne! 
09/15/18: Our collaborative proposal with Suvrit Sra (MIT) received $600K from the NSF Division of Mathematical Sciences
06/18/18: Mingming's team won the single image depth prediction competition in Robust Vision Challenge 2018!
05/09/18: We are awarded a large R01 ($2.8M with indirect) to develop an approach to integrate Radiomic data with Genetic for characterization of Chronic Obstructive Pulmonary Disease (COPD).
04/29/18: Congratulations to Sumedha for the Early Acceptance of her first paper to MICCAI!
04/27/18: We are awarded $390K to develop methods for multimodal learning in collaboration with SAP research.
02/19/18: Congratulations to Mingming Gong--two CVPR papers have been accepted!

Pages

Positions Available

Graduate Student: I am always looking for genuinely motivated students for my lab in medical vision, machine learning, and statistics. If you are sending me an email, please make sure you include all of the following four items, (1) CV, (2) Bachelor Transcript,  (3) Link to your GitHub, and (4) Representative Manuscript (if you have any).     
Data Analyst: I am hiring a full-time data analyst to help us with many of our projects. Please send me your application if you are interested (see the job ad for detail).
Postdoc Position (1): We are working on an exciting project developing Machine Learning technology to monitor the brain during surgery. The project has a commercialization opportunity (see the job ad for detail).
Postdoc Position (2): I am hiring a post-doc for an exciting imaging-genetic project. Please send me your application if you are interested (see the job ad for detail). 

Lab Members

Post Doctoral Researchers:  Junxiang ChenBrian Pollack 

Graduate Students Researchers:  Sumedha Singla, Ke Yu (co-advised by Dr. Visweswaran), Yanwu Xu, Li Sun

Master Students from CMU (co-advised by Katerina Fragkiadaki): Jiaming Bai, Keyi Yu, Fan Qian, Lisa Hou

Former Members: Mingming Gong, Payman Yadollahpour

Selected Publications

Twin Auxiliary Classifiers GAN
M.*, Y. Xu*, Ch. Li, Kun Zhang, K. Batmanghelich (*: equal contribution)
NeurIPS 2019 [Spotlight 2.4%]
[abs] [pdf]

Subject2Vec: Generative-Discriminative Approach from a Set of Image Patches to a Vector
S. Singla, M. Gong, S. Ravanbakhsh, F. Sciurba, B. Poczos, K. N. Batmanghelich
Medical Image Computing & Computer Assisted Intervention
[abs] [pdf]

A Likelihood-Free Approach for Characterizing Heterogeneous Diseases in Large-Scale Studies
J. Schabdach, S. Wells, M. Cho, N. Batmanghelich
Information Processing in Medical Imaging (IPMI)
[abs] [pdf]

Probabilistic Modeling of Imaging, Genetics and the Diagnosis
K.N. Batmanghelich, A. Dalca, G. Quon, M. Sabuncu, P. Golland
IEEE Trans Med Imaging
[abs] [pdf]

Nonparametric Spherical Topic Modeling with Word Embeddings
N. Batmanghelich, A. Saeediy, K. Narasimhan, S. Gershman
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (ACL)
[abs] [pdf]

Publications

2019

Generative-Discriminative Complementary Learning
Y. Xu*, M. Gong*, J. Chen, T. Liu, K. Zhang, K. Batmanghelich (*: equal contribution)
to appear in proceeding of Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)
[abs] [pdf]

Geometry-Consistent Adversarial Networks for One-Sided Unsupervised Domain Mapping
H. Fu*, M. Gong*, C. Wang, K. Batmanghelich, K. Zhang, D. Tao (*: equal contribution)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019
[abs] [pdf]

Twin Auxiliary Classifiers GAN
M.*, Y. Xu*, Ch. Li, Kun Zhang, K. Batmanghelich (*: equal contribution)
NeurIPS 2019 [Spotlight 2.4%]
[abs] [pdf]

Weakly Supervised Disentanglement by Pairwise Similarities
J. Chen, K. Batmanghelich
to appear in proceeding of Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)
[abs] [pdf]

Generative Interpretability: Application in Disease Subtyping
P. Yadollahpour, A. Saeedi, S. Singla, F. C. Sciurba, K. Batmanghelich
Submitted to IEEE Transaction of Medical Imaging
[abs] [pdf]

Robust Ordinal VAE: Employing Noisy Pairwise Comparisons for Disentanglement
J. Chen, K. Batmanghelich
Preprint: arXiv:1910.05898
[abs] [pdf]

Explanation by Progressive Exaggeration
S. Singla, B. Pollack, J. Chen, K. Batmanghelich
Preprint: arXiv:1911.00483
[abs] [pdf]

Unpaired Data Empowers Association Tests
M. Gong, P. Liu, F. C Sciurba, P. Stojanov, D. Tao, G. Tseng, K. Zhang, K. Batmanghelich
Preprint: bioRxiv DOI:10.1101/839159
[abs] [pdf]

2018

A structural equation model for imaging genetics using spatial transcriptomics
S. M. H. Huisman, A. Mahfouz, K. Batmanghelich, B. P. F. Lelieveldt, M. J. T. Reinders
Brain Informatics
[abs] [pdf]

Causal Generative Domain Adaptation Networks
M. Gong, K. Zhang, B. Huang, C. Glymour, D. Tao, K. Batmanghelich
Preprint: arXiv:1804.04333
[abs] [pdf]

Deep Diffeomorphic Normalizing Flows
H. Salman, P. Yadollahpour, T. Fletcher, K. Batmanghelich
Preprint: arXiv:1810.03256
[abs] [pdf]

An Efficient and Provable Approach for Mixture Proportion Estimation Using Linear Independence Assumption
X. Yu, T. Liu, M. Gong, K. Batmanghelich, D. Tao
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018
[abs] [pdf]

Deep Ordinal Regression Network for Monocular Depth Estimation
H. Fu, M. Gong, C. Wang, K. Batmanghelich, D. Tao
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018
[abs] [pdf]

Textured Graph-Based Model of the Lungs: Application on Tuberculosis Type Classification and Multi-drug Resistance Detection
Y.D. Cid, K. Batmanghelich, H. Müller
 International Conference of the Cross-Language Evaluation Forum for European Languages
[abs] [pdf]

Subject2Vec: Generative-Discriminative Approach from a Set of Image Patches to a Vector
S. Singla, M. Gong, S. Ravanbakhsh, F. Sciurba, B. Poczos, K. N. Batmanghelich
Medical Image Computing & Computer Assisted Intervention
[abs] [pdf]

2017

A Likelihood-Free Approach for Characterizing Heterogeneous Diseases in Large-Scale Studies
J. Schabdach, S. Wells, M. Cho, N. Batmanghelich
Information Processing in Medical Imaging (IPMI)
[abs] [pdf]

Transformations Based on Continuous Piecewise-Affine Velocity Fields
O. Freifeld, S. Hauberg, J. Fisher III, N. Batmanghelich
IEEE Transactions on Pattern Analysis and Machine Intelligence
[abs] [pdf]

2016

Nonparametric Spherical Topic Modeling with Word Embeddings
N. Batmanghelich, A. Saeediy, K. Narasimhan, S. Gershman
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (ACL)
[abs] [pdf]

Inferring Disease Status by non-Parametric Probabilistic Embedding
N. Batmanghelich, A. Saeedi, R. J. Estepar, M. Cho, S. Wells
Workshop on Medical Computer Vision: Algorithms for Big Data (MCV)
[abs] [pdf]

Unsupervised Discovery of Emphysema Subtypes in a Large Clinical Cohort
P. Binder N. Batmanghelich, R. J. Estepar, P. Golland
7th International Workshop on Machine Learning in Medical Imaging (MLMI)
[abs] [pdf]

Probabilistic Modeling of Imaging, Genetics and the Diagnosis
K.N. Batmanghelich, A. Dalca, G. Quon, M. Sabuncu, P. Golland
IEEE Trans Med Imaging
[abs] [pdf]

2015

Highly-Expressive Spaces of Well- Behaved Transformations: Keeping It Simple
O. Freifeld, S. Hauberg, N. Batmanghelich
Proceedings of the IEEE International Conference on Computer Vision (ICCV)
[abs] [pdf]

Generative Method to Discover Genetically Driven Image Biomarkers
K.N. Batmanghelich*, A. Saeedi*, M. Cho, R. Jose, P. Golland
In Proc. IPMI: International Conference on Information Processing and Medical Imaging
[abs] [pdf]

2014

Spherical Topic Models for Imaging Phenotype Discovery in Genetic Studies
K.N. Batmanghelich, M. Cho, R. Jose, P. Golland
In Proc. BAMBI: Workshop on Bayesian and Graphical Models for Biomedical imaging, International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI)
[abs] [pdf]

Diversifying Sparsity Using Variational Determinantal Point Processes
K.N. Batmanghelich, G. Quon, A. Kuleza, M. Kellis, P. Golland, L. Bornn
In Proc. ArXiv
[abs] [pdf]

BrainPrint in the Computer-Aided Diagnosis of Alzheimer's Disease
C. Wachinger, K. Batmanghelich, P. Golland, M. Reuter
Challenge on Computer-Aided Diagnosis of Dementia, MICCAI, 2014
[abs] [pdf]

2013

Joint Modeling of Imaging and Genetics
K.N. Batmanghelich, A.V. Dalca, M.R. Sabuncu, P. Golland
In Proc. IPMI: International Conference on Information Processing and Medical Imaging
[abs] [pdf]

2012

Generative-Discriminative Basis Learning for Medical Imaging
N. Batmanghelich, B. Taskar, C. Davatzikos
IEEE Trans Med Imaging
[abs] [pdf]

Dominant Component Analysis of Electro- physiological Connectivity Network
Y. Ghanbari, L. Bloy, N. Batmanghelich, R. Verma
International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI)
[abs] [pdf]

An integrated Framework for High Angular Resolution Diffusion Imaging-Based Investigation of Structural Connectivity
L. Bloy, M. Ingalhalikar, N. Batmanghelich
Brain Connectivity
[abs] [pdf]

2011

Regularized Tensor Factorization for Multi-Modality Medical Image Classification
N. Batmanghelich, B. Taskar, C. Davatzikos
International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2011)
[abs] [pdf]

Disease Classification and Prediction via Semi-Supervised Dimensionality Reduction
N. Batmanghelich, D. Ye, K. Pohl, B. Taskar, C. Davatzikos
ISBI 2011 (Oral Presentation)
[abs] [pdf]

2010

Application of Trace-Norm and Low-Rank Matrix Decomposition for Computational Anatomy
N. Batmanghelich, A. Gooya, B. Taskar, C. Davatzikos
IEEE Computer Society Workshop on Mathematical Methods in Biomedical Image Analysis (MMBIA10)
[abs] [pdf]

Prediction of MCI Conversion via MRI, CSF Biomarkers, and Pattern Classification
C. Davatzikos, P. Bhatt, L. Shaw, N. Batmanghelich, J. Trojanowski
Neurobiology of Aging
[abs] [pdf]

2009

A General and Unifying Framework for Feature Construction. in Image-Based Pattern Classification
N. Batmanghelich, B. Taskar, C. Davatzikos
20th International Conference on Information Processing in Medical Imaging (IPMI)
[abs] [pdf]

Textured Graph-Based Model of the Lungs: Application on Tuberculosis Type Classification and Multi-drug Resistance Detection
Y.D. Cid, K. Batmanghelich, H. Müller
 International Conference of the Cross-Language Evaluation Forum for European Languages
[abs] [pdf]

Spatial Patterns of Brain Atrophy in MCI Patients, Identified via High-dimensional Pattern Classification, Predict Subsequent Cognitive Decline
Y. Fan, N. Batmanghelich, C. Clark, C. Davatzikos
NeuroImage
[abs] [pdf]