Directed GMs: Bayesian Networks

Kayhan Batmanghelich
Announcements

• HW0 is out
• Class recording on YouTube
• Readings will be posted today
• Piazza
• Office hours will be posted soon
• Who is going to scribe?

```python
In [1]: import numpy as np
In [2]: row, col = np.random.randint(1,5,size=(1,)), np.random.randint(1,10,size=(1,))
In [3]: print(row, col)
[[4] [6]]
```
Two types of GMs

- Directed edges give causality relationships (Bayesian Network or Directed Graphical Model):

\[
P(X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8) \\
= P(X_1) P(X_2) P(X_3|X_1) P(X_4|X_2) P(X_5|X_2) \\
P(X_6|X_3, X_4) P(X_7|X_6) P(X_8|X_5, X_6)
\]

- Undirected edges simply give correlations between variables (Markov Random Field or Undirected Graphical model):

\[
P(X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8) \\
= \frac{1}{Z} \exp\{E(X_1)+E(X_2)+E(X_3, X_1)+E(X_4, X_2)+E(X_5, X_2) \\
+ E(X_6, X_3, X_4)+E(X_7, X_6)+E(X_8, X_5, X_6)\}
\]
• **Representation of directed GM**
Notation

• Variable, value and index

• Random variable

• Random vector

• Random matrix

• Parameters
Example: The Dishonest Casino

A casino has two dice:

- **Fair die**
 \[P(1) = P(2) = P(3) = P(5) = P(6) = 1/6 \]

- **Loaded die**
 \[P(1) = P(2) = P(3) = P(5) = 1/10 \]
 \[P(6) = 1/2 \]

Casino player switches back-&-forth between fair and loaded die once every 20 turns

Game:

1. You bet $1
2. You roll (always with a fair die)
3. Casino player rolls (maybe with fair die, maybe with loaded die)
4. Highest number wins $2
Puzzles regarding the dishonest casino

GIVEN: A sequence of rolls by the casino player

124552646214613613666166466163661636616366515615115146123562344

QUESTION

- How likely is this sequence, given our model of how the casino works?
 - This is the **EVALUATION** problem

- What portion of the sequence was generated with the fair die, and what portion with the loaded die?
 - This is the **DECODING** question

- How “loaded” is the loaded die? How “fair” is the fair die? How often does the casino player change from fair to loaded, and back?
 - This is the **LEARNING** question
Knowledge Engineering

• Picking variables
 • Observed
 • Hidden

• Picking structure
 • CAUSAL
 • Generative
 • Coupling

• Picking Probabilities
 • Zero probabilities
 • Orders of magnitudes
 • Relative values
Hidden Markov Model

The underlying source:
Speech signal
genome function
dice

The sequence:
Phonemes
DNA sequence
sequence of rolls

...
Getting Insights from the Probability

• Given a sequence \(x = x_1 \ldots x_T \) and a parse \(y = y_1, \ldots, y_T \)

• To find how likely is the parse:
 (given our HMM and the sequence)

 \[
 p(x, y) = p(x_1 \ldots x_T, y_1, \ldots, y_T) \quad \text{(Joint probability)}
 \]

 \[
 = p(y_1) p(x_1 | y_1) p(x_2 | y_1) \cdots p(y_T | y_{T-1}) p(x_T | y_T)
 \]

 \[
 = p(y_1) P(y_2 | y_1) \cdots p(y_T | y_{T-1}) \times p(x_1 | y_1) p(x_2 | y_2) \cdots p(x_T | y_T)
 \]

 \[
 = p(y_1, \ldots, y_T) p(x_1 \ldots x_T | y_1, \ldots, y_T)
 \]

• How far on the tail (Marginal probability):

 \[
 p(x) = \sum_y p(x, y) = \sum_{y_1} \sum_{y_2} \cdots \sum_{y_T} \pi_{y_1} \prod_{t=2}^T a_{y_{t-1}, y_t} \prod_{t=1}^T p(x_t | y_t)
 \]

• When did he use unfair dice (Posterior probability):

 \[
 p(y | x) = \frac{p(x, y)}{p(x)}
 \]

• We will learn how to do this explicitly (polynomial time)
Directed Graphical Model (Bayesian Network)

- **Nodes** represent observed and unobserved random variables. **Edges** denote influence/dependence.

- The graph denotes the data generating procedure.

- It is a data structure/language to represent factorization of joint distribution.

\[
p(x, y) = p(x)p(y) \quad \text{and} \quad p(x, y) = p(x)p(y|x)
\]

- One can read the set of conditional independence from the graph.

\[
x \perp y \\
x \perp y
\]
Bayesian Network: Factorization Theorem

Theorem:

Given a DAG, The most general form of the probability distribution that is consistent with the graph factors according to “node given its parents”:

\[P(X_1, \ldots, X_n) = \prod_{i=1}^{n} P(X_i | pa(X_i)) \]

where \(X_{\pi_i} \) is the set of parents of \(X_i \), \(d \) is the number of nodes (variables) in the graph.
Specification of a directed GM

• There are two components to any GM:
 • the *qualitative* specification specifies a family of distributions
 • the *quantitative* specification specifies a distribution from the family
Where does the Qualitative Specification come from?

- Prior knowledge of causal relationships
- Prior knowledge of modular relationships
- Assessment from experts
- Learning from data
- We simply link a certain architecture (e.g. a layered graph)
- ...

© Eric Xing @ CMU, 2005-2015
DAG and Independences
Local Structures & Independencies

• Common parent
 • Fixing B decouples A and C
 "given the level of gene B, the levels of A and C are independent"

• Cascade
 • Knowing B decouples A and C
 "given the level of gene B, the level gene A provides no extra prediction value for the level of gene C"

• V-structure
 • Knowing C couples A and B
 because A can "explain away" B w.r.t. C
 "If A correlates to C, then chance for B to also correlate to B will decrease"

• The language is compact, the concepts are rich!
A simple proof:

Factorization by the graph \equiv Independent Set

\[
P(A, B, C) = P(A|B)P(C|B)P(B) \quad \mathcal{I}(\mathcal{G}) = \{ A \perp B|C \}\]
I-maps

• **Defn**: Let P be a distribution over X. We define $I(P)$ to be the set of independence assertions of the form $(X \perp Y \mid Z)$ that hold in P (however how we set the parameter-values).

• **Defn**: Let K be *any graph object* associated with a set of independencies $I(K)$. We say that K is an *I-map* for a set of independencies I, $I(K) \subseteq I$.

• We now say that G is an I-map for P if G is an I-map for $I(P)$, where we use $I(G)$ as the set of independencies associated.
I-map is a conservative specification of P.

Ex: Which of the following graphs allows for both probability distributions?

Any independence that G asserts must also hold in P. Conversely, P may have additional independencies that are not reflected in G.
The intuition behind $I(G)$
local Markov assumptions of BN

Remember the Bayesian network structure:

$$P(X_1, \cdots, X_n) = \prod_{i=1}^{n} P(X_i | pa(X_i))$$

• Defn:

Let Pa_i denote the parents of X_i in G, and $NonDescendants_{X_i}$ denote the variables in the graph that are not descendants of X_i. Then G encodes the following set of local conditional independence assumptions $I_\ell(G)$:

$$I_\ell(G) = \{ X_i \perp \left\{ NonDescendants(X_i) \right\} | pa(X_i) : \forall i \}$$

In other words, each node X_i is independent of its nondescendants given its parents.

© Eric Xing @ CMU, 2005-2015
d-connection and d-separation

Defn: If G is a directed graph in which \mathcal{X}, \mathcal{Y} and \mathcal{Z} are disjoint sets of vertices, then \mathcal{X} and \mathcal{Y} are **d-connected** by \mathcal{Z} in G if and only if there exists an undirected path U between some vertex in \mathcal{X} and some vertex in \mathcal{Y} such that for every collider C on U, either C or a descendent of C is in \mathcal{Z}, and no non-collider on U is in \mathcal{Z}.

\mathcal{X} and \mathcal{Y} are **d-separated** by \mathcal{Z} in G if and only if they are not d-connected by \mathcal{Z} in G.

\[
\mathcal{X} \perp \mathcal{Y} \mid \mathcal{Z}
\]
Alternative Definition

Defn: variables x and y are *D-separated* (conditionally independent) given z if they are separated in the *moralized* ancestral graph

- **Example:**
Bayes Ball Algorithm: Testing $\mathcal{X} \perp \mathcal{Y} | \mathcal{Z}$

- \mathcal{X} is **d-separated** (directed-separated) from \mathcal{Z} given \mathcal{Y} if we can't send a ball from any node in \mathcal{X} to any node in \mathcal{Z} using the "Bayes-ball" algorithm illustrated below (and plus some boundary conditions):

 Causal Trail:

 - **Blocked**
 - **Active**

 Common Cause:

 - **Blocked**
 - **Active**

 Common Effect:
Example:

\[a \perp e \mid b? \]

\[a \perp e \mid c? \]
Example:

• Complete the I(G) of this graph:

Scriber please fill in the rest of this slide!
A bit of Theories
Toward quantitative specification of probability distribution

- Separation properties in the graph imply independence properties about the associated variables

- **The Equivalence Theorem**

 For a graph G,

 Let \mathcal{D}_1 denote the family of all distributions that satisfy $I(G)$,

 Let \mathcal{D}_2 denote the family of all distributions that factor according to G,

 \[
P(X_1, \ldots, X_n) = \prod_{i=1}^{n} P(X_i | pa(X_i))\]

 Then $\mathcal{D}_1 \equiv \mathcal{D}_2$
Soundness and completeness

D-separation is sound and "complete" w.r.t. BN factorization law

Soundness:

Theorem: If a distribution P factorizes according to G, then $I(G) \subseteq I(P)$.

"Completeness":

"Claim": For any distribution P that factorizes over G, if $(X \perp Y \mid Z) \in I(P)$ then $d-sep_G(X; Y \mid Z)$?
Soundness and completeness

D-separation is sound and "complete" w.r.t. BN factorization law

Soundness:

Theorem: If a distribution \(P \) factorizes according to \(G \), then \(I(G) \subseteq I(P) \).

"Completeness":

"Claim": For any distribution \(P \) that factorizes over \(G \), if \((X \perp Y \mid Z) \in I(P) \) then \(d\text{-sep}_G(X; Y \mid Z) \).

- **Theorem**: For almost all distributions \(P \) that factorize over \(G \), i.e., for all distributions except for a set of "measure zero" in the space of CPD parameterizations, we have that \(I(P) = I(G) \)

- **Thm**: Let \(G \) be a BN graph. If \(X \) and \(Y \) are not d-separated given \(Z \) in \(G \), then \(X \) and \(Y \) are dependent in some distribution \(P \) that factorizes over \(G \).
Uniqueness of BN

• Which graphs satisfy $\mathcal{I}(G) = \{x_1 \perp x_2 | x_3\}$?

• You can see that in the factorization:

\[
\frac{p(x_2 \mid x_3)p(x_3 \mid x_1)p(x_1)}{p(x_2, x_3)p(x_3, x_1) / p(x_3)} = p(x_1 \mid x_3)p(x_2, x_3) = p(x_1 \mid x_3)p(x_2 \mid x_3)p(x_3)
\]
I-equivalence

- Which graphs satisfy $I(\mathcal{G}) = \{x_1 \perp x_2 | x_3\}$?

- **Defn**: Two BN graphs G_1 and G_2 over X are *I-equivalent* if $I(G_1) = I(G_2)$.

 - Any distribution P that can be factorized over one of these graphs can be factorized over the other.
 - Furthermore, there is no intrinsic property of P that would allow us associate it with one graph rather than an equivalent one.
 - This observation has important implications with respect to our ability to determine the directionality of influence.
Detecting I-equivalence

• **Defn**: The *skeleton* of a Bayesian network graph G over V is an undirected graph over V that contains an edge $\{X, Y\}$ for every edge (X, Y) in G.

![Graphs](image)

(a) (b) (c)

• **Thm**: Let G_1 and G_2 be two graphs over V. If G_1 and G_2 have the same skeleton and the same set of v-structures then they are I-equivalent.
Practical Examples
Example of CPD for Discrete BN

\[
P(a,b,c,d) = P(a)P(b)P(c|a,b)P(d|c)
\]
Example of CPD for Continuous BN

\[P(a, b, c, d) = P(a)P(b)P(c \mid a, b)P(d \mid c) \]

A \sim \mathcal{N}(\mu_a, \Sigma_a) \quad B \sim \mathcal{N}(\mu_b, \Sigma_b)

C \sim \mathcal{N}(A + B, \Sigma_c)

D \sim \mathcal{N}(\mu_d + C, \Sigma_d)
Simple BNs:
Conditionally Independent Observations

\[\theta \]

\[y_1 \quad y_2 \quad y_{n-1} \quad y_n \]

Model parameters

Data
The “Plate” Micro

Plate = rectangle in graphical model

variables within a plate are replicated in a conditionally independent manner

\[\text{Data} = \{y_1, \ldots, y_n\} \]

\[\theta \]

© Eric Xing @ CMU, 2005-2015
Hidden Markov Model:
from static to dynamic mixture models

Static mixture

Dynamic mixture

© Eric Xing @ CMU, 2005-2015
Definition (of HMM)

- **Observation space**
 - Alphabetic set: \(C = \{c_1, c_2, \ldots, c_K\} \)
 - Euclidean space: \(\mathbb{R}^d \)

- **Index set of hidden states**
 \(I = \{1, 2, \ldots, M\} \)

- **Transition probabilities** between any two states
 \[
p(y_t^i = 1 \mid y_{t-1}^j = 1) = a_{i,j},
 \]
 or
 \[
p(y_t \mid y_{t-1}^j = 1) \sim \text{Multinomial}(a_{i,1}, a_{i,1}, \ldots, a_{i,M}), \forall i \in I.
 \]

- **Start probabilities**
 \[
p(y_1) \sim \text{Multinomial}(\pi_1, \pi_2, \ldots, \pi_M).
 \]

- **Emission probabilities** associated with each state
 \[
p(x_t \mid y_t^i = 1) \sim \text{Multinomial}(b_{i,1}, b_{i,1}, \ldots, b_{i,K}), \forall i \in I.
 \]
 or in general:
 \[
p(x_t \mid y_t^i = 1) \sim f(\cdot \mid \theta_i), \forall i \in I.
 \]
Probability of a parse

• Given a sequence $x = x_1 \ldots x_T$
 and a parse $y = y_1, \ldots, y_T$

• To find how likely is the parse:
 (given our HMM and the sequence)

\[
p(x, y) = p(x_1 \ldots x_T, y_1, \ldots, y_T) \quad \text{(Joint probability)}
= p(y_1) p(x_1 \mid y_1) p(y_2 \mid y_1) p(x_2 \mid y_2) \ldots p(y_T \mid y_{T-1}) p(x_T \mid y_T)
= p(y_1) P(y_2 \mid y_1) \ldots p(y_T \mid y_{T-1}) \times p(x_1 \mid y_1) p(x_2 \mid y_2) \ldots p(x_T \mid y_T)
= p(y_1, \ldots, y_T) p(x_1 \ldots x_T \mid y_1, \ldots, y_T)
\]
Summary: take home messages

• **Defn (3.2.5):** A *Bayesian network* is a pair \((G, P)\) where \(P\) factorizes over \(G\), and where \(P\) is specified as set of *local conditional probability dist.* CPDs associated with \(G\)'s nodes.

• A BN capture “causality”, “generative schemes”, “asymmetric influences”, etc., between entities

• Local and global independence properties identifiable via \(d\)-separation criteria (Bayes ball)

• Computing joint likelihood amounts multiplying CPDs
 • But computing marginal can be difficult
 • Thus inference is in general hard

• Important special cases:
 • Hidden Markov models
 • Tree models
A few myths about graphical models

• They require a localist semantics for the nodes ✓

• They require a causal semantics for the edges ×

• They are necessarily Bayesian ×

• They are intractable ×

© Eric Xing @ CMU, 2005-2015
Extra Slides
Active trail

- **Causal trail** $X \rightarrow Z \rightarrow Y$: active if and only if Z is not observed.

- **Evidential trail** $X \leftarrow Z \leftarrow Y$: active if and only if Z is not observed.

- **Common cause** $X \leftarrow Z \rightarrow Y$: active if and only if Z is not observed.

- **Common effect** $X \rightarrow Z \leftarrow Y$: active if and only if either Z or one of Z’s descendants is observed.

Definition: Let X, Y, Z be three sets of nodes in G. We say that X and Y are d-separated given Z, denoted d-$\text{sep}_G(X;Y \mid Z)$, if there is no active trail between any node $X \in X$ and $Y \in Y$ given Z.
What is in $\text{I}(G)$ ---
Global Markov properties of BN

- X is **d-separated** (directed-separated) from Z given Y if we can't send a ball from any node in X to any node in Z using the "Bayes-ball" algorithm illustrated bellow (and plus some boundary conditions):

```
X    Y    Z
     \_\_\_\_\_\_
(a)   Y
     \_\_\_\_\_\_
X    Z

X    Y    Z
     \_\_\_\_\_\_
(b)   Y
     \_\_\_\_\_\_
X    Z
```

- **Defn:** $\text{I}(G)$=all independence properties that correspond to d-separation:

$$\text{I}(G) = \{X \perp Z \mid Y : \text{dsep}_G(X; Z \mid Y)\}$$

- D-separation is sound and complete (more details later)
Summary: Representing Multivariate Distribution

- **Representation**: what is the joint probability dist. on multiple variables?
 \[P(X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8) \]
 - How many state configurations in total? --- \(2^8\)
 - Are they all needed to be represented?
 - Do we get any scientific/medical insight?

- **Factored representation**: the chain-rule
 \[
 P(X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8) \\
 = P(X_1)P(X_2 | X_1)P(X_3 | X_1, X_2)P(X_4 | X_1, X_2, X_3)P(X_5 | X_1, X_2, X_3, X_4)P(X_6 | X_1, X_2, X_3, X_4, X_5) \\
 = P(X_7 | X_1, X_2, X_3, X_4, X_5, X_6)P(X_8 | X_1, X_2, X_3, X_4, X_5, X_6, X_7)
 \]
 - This factorization is true for any distribution and any variable ordering
 - Do we save any parameterization cost?

- **If \(X_i\)'s are independent**: \(P(X_i | \cdot) = P(X_i)\)
 \[
 P(X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8) \\
 = P(X_1)P(X_2)P(X_3)P(X_4)P(X_5)P(X_6)P(X_7)P(X_8) = \prod P(X_i)
 \]
 - What do we gain?
 - What do we lose?
Minimum I-MAP

• Complete graph is a (trivial) I-map for any distribution, yet it does not reveal any of the independence structure in the distribution.
 • Meaning that the graph dependence is arbitrary, thus by careful parameterization an dependencies can be captured
 • We want a graph that has the maximum possible $I(G)$, yet still $\subseteq I(P)$

• **Defn**: A graph object G is a *minimal I-map* for a set of independencies I if it is an I-map for I, and if the removal of even a single edge from G renders it not an I-map.
Minimum I-MAP is not unique

(a)

(b)

(c)
Summary of BN semantics

• **Defn**: A *Bayesian network* is a pair \((G, P)\) where \(P\) factorizes over \(G\), and where \(P\) is specified as set of CPDs associated with \(G\)’s nodes.

 • Conditional independencies imply factorization

 • Factorization according to \(G\) implies the associated conditional independencies.

 • Are there other *independences* that hold for every distribution \(P\) that factorizes over \(G\)?