Exponential Families and Friends: Learning the Parameters of the a Fully Observed BN

Kayhan Batmanghelich
Machine Learning

The **data** inspires the structures we want to predict.

Inference finds \{best structure, marginals, partition function\} for a new observation.

(\text{Inference} \text{ is usually called as a subroutine in learning})

Our **model** defines a score for each structure.

It also tells us what to optimize.

\textbf{Learning} tunes the parameters of the model.
Machine Learning

Data

Inference

(Inference is usually called as a subroutine in learning)

Model

Objective

Learning

1. Alice saw Bob on a hill with a telescope

2. Time flies like an arrow

3. Objective

$X_1 \rightarrow X_2 \rightarrow X_3 \rightarrow X_4 \rightarrow X_5$

4. Alice saw Bob on a hill with a telescope

3
Today’s Lecture

\[p(X_1, X_2, X_3, X_4, X_5) = \]
\[p(X_5 | X_3)p(X_4 | X_2, X_3) \]
\[p(X_3)p(X_2 | X_1)p(X_1) \]
Today’s Lecture

\[p(X_1, X_2, X_3, X_4, X_5) = p(X_5|X_3)p(X_4|X_2, X_3) p(X_3)p(X_2|X_1)p(X_1) \]
Today’s Lecture

How do we define and learn these conditional and marginal distributions for a Bayes Net?
Today’s Lecture

1. Exponential Family Distributions
 A candidate for marginal distributions, $p(X_i)$

2. Generalized Linear Models
 Convenient form for conditional distributions,
 $p(X_j | X_i)$

3. Learning Fully Observed Bayes Nets
 Easy thanks to decomposability
A candidate for **marginal** distributions, $p(X_i)$

1. EXPONENTIAL FAMILY
Why the **Exponential Family**?

1. **Pitman-Koopman-Darmois theorem**: it is the only family of distributions with **sufficient statistics that do not grow** with the size of the dataset

2. Only family of distributions for which **conjugate priors exist** (see Murphy textbook for a description)

3. It is the distribution that is closest to uniform (i.e. **maximizes entropy**) – subject to moment matching constraints

4. Key to **Generalized Linear Models** (**next section**)

5. Includes some of your favorite distributions!

Adapted from Murphy (2012) textbook
Whiteboard

• Definition of multivariate exponential family
Whiteboard

• Example 1: Categorical distribution
Whiteboard

• Example 2: Multivariate Gaussian distribution
Moments and the Partition Function

\[p(x; \theta) = \exp \left[x^T \theta - A(\theta) \right] h(x) \]
Moments and the Partition Function

\[p(x; \theta) = \exp \left[x^T \theta - A(\theta) \right] h(x) \]

\[\nabla_\theta A(\theta) = \mathbb{E}[T(x)] \]

\[\nabla^2_\theta A(\theta) = \mathbb{E}[T(x)T(x)^T] - \mathbb{E}[T(x)]\mathbb{E}[T(x)]^T \]
Sufficiency

• For \(p(x; \theta) \), \(T(x) \) is **sufficient** for \(\theta \) if there is no information in \(X \) regarding \(\theta \) beyond that in \(T(x) \).

 – We can throw away \(X \) for the purpose of inference w.r.t. \(\theta \).

 – **Bayesian view**
 \[
 p(\theta | T(x), x) = p(\theta | T(x))
 \]

 – **Frequentist view**
 \[
 p(x | T(x), \theta) = p(x | T(x))
 \]

 – The Neyman factorization theorem
 • \(T(x) \) is **sufficient** for \(\theta \) if
 \[
 p(x, T(x), \theta) = \psi_1(T(x), \theta)\psi_2(x, T(x))
 \Rightarrow p(x | \theta) = g(T(x), \theta)h(x, T(x))
 \]
Sufficiency

\[p(x; \theta) = \exp \left[x^T \theta - A(\theta) \right] h(x) \]

- Let’s assume \(x_i \overset{iid}{\sim} p(x; \theta) \)

\[p(x_1, \cdots, x_n; \theta) = \left(\prod_{j=1}^{n} h(x_j) \right) \exp \left(\theta^T \sum_{j}^{n} T(x_j) - nA(\theta) \right) \]
MLE for Exponential Family

- For iid data, the log-likelihood is

\[
\ell (\eta; D) = \log \prod_n h(x_n) \exp \{ \eta^T T(x_n) - A(\eta) \} \\
= \sum_n \log h(x_n) + \left(\eta^T \sum_n T(x_n) \right) - NA(\eta)
\]

- Take derivatives and set to zero:

\[
\frac{\partial \ell}{\partial \eta} = \sum_n T(x_n) - N \frac{\partial A(\eta)}{\partial \eta} = 0 \\
\frac{\partial A(\eta)}{\partial \eta} = \frac{1}{N} \sum_n T(x_n) \\
\Rightarrow \bar{\mu}_{MLE} = \frac{1}{N} \sum_n T(x_n)
\]

- This amounts to moment matching.

- We can infer the canonical parameters using

\[
\hat{\eta}_{MLE} = \psi(\bar{\mu}_{MLE})
\]
Examples

- **Gaussian:**

 \[
 \eta = \left[\Sigma^{-1}\mu; -\frac{1}{2} \text{vec}(\Sigma^{-1}) \right] \\
 T(x) = \left[x; \text{vec}(xx^T) \right] \\
 A(\eta) = \frac{1}{2} \mu^T \Sigma^{-1} \mu + \frac{1}{2} \log |\Sigma| \\
 h(x) = (2\pi)^{-k/2} \\
 \Rightarrow \mu_{MLE} = \frac{1}{N} \sum_n T_1(x_n) = \frac{1}{N} \sum_n x_n
 \]

- **Multinomial:**

 \[
 \eta = \left[\ln \left(\frac{\pi_k}{\pi_K} \right); 0 \right] \\
 T(x) = [x] \\
 A(\eta) = -\ln \left(1 - \sum_{k=1}^{K-1} \pi_k \right) = \ln \left(\sum_{k=1}^{K} e^{\eta_k} \right) \\
 h(x) = 1 \\
 \Rightarrow \mu_{MLE} = \frac{1}{N} \sum_n x_n
 \]

- **Poisson:**

 \[
 \eta = \log \lambda \\
 T(x) = x \\
 A(\eta) = \lambda = e^{\eta} \\
 h(x) = \frac{1}{x!} \\
 \Rightarrow \mu_{MLE} = \frac{1}{N} \sum_n x_n
 \]
Whiteboard

• Bayesian estimation of exponential family
 \[p(x|\theta) = \exp \left[x^T \theta - A(\theta) \right] h(x) \]

• We have observed iid samples and we are interested in
 \[p(\theta|\{x_1, \cdots, x_n\}) \]
Posterior Mean Under Conjugate Prior

\[p(x|\theta) = \exp \left[x^T \theta - A(\theta) \right] h(x) \]

\[p(\theta; \tau, n_0) = \exp \left(\tau^T \theta - n_0 A(\theta) - \tilde{A}(\tau, n_0) \right) \]

\[p(\theta|\mathcal{D}) = p(\theta; \tau + \sum_i T(x_i); n + n_0) \]

- Posterior mean of \(\theta \)

\[\mathbb{E}[\theta|\mathcal{D}] = \frac{n}{n + n_0} \left(\sum_i \frac{T(x_i)}{n} \right) + \frac{n_0}{n_0 + n} \left(\frac{\tau}{n_0} \right) \]
2. GENERALIZED LINEAR MODELS

Convenient form for conditional distributions, $p(X_j | X_i)$
Why Generalized Linear Models? (GLIMs)

1. Generalization of linear regression, logistic regression, probit regression, etc.
2. Provides a framework for creating new conditional distributions that come with some convenient properties.
3. Special case: GLMs with canonical response functions are easy to train with MLE.
4. No Free Lunch: What about Bayesian estimation of GLMs? Unfortunately, we have to turn to approximation techniques since, in general, there isn't a closed form of the posterior.
Generalized Linear Models (GLMs)

- **GLM**
 - The observed input x is assumed to enter into the model via a linear combination of its elements $\xi = \theta^T x$
 - The conditional mean μ is represented as a function $f(\xi)$ of ξ, where f is known as the response function
 - The observed output y is assumed to be characterized by an **exponential family distribution** with conditional mean μ.

© Eric Xing @ CMU, 2005-2015
Whiteboard

- Constructive definition of GLMs
- Definition of GLMs with canonical response functions
Examples of the canonical response functions

<table>
<thead>
<tr>
<th>Distrib.</th>
<th>Link $g(\mu)$</th>
<th>$\theta = \psi(\mu)$</th>
<th>$\mu = \psi^{-1}(\theta) = \mathbb{E}[y]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathcal{N}(\mu, \sigma^2)$</td>
<td>identity</td>
<td>$\theta = \mu$</td>
<td>$\mu = \theta$</td>
</tr>
<tr>
<td>Bin(N, μ)</td>
<td>logit</td>
<td>$\theta = \log\left(\frac{\mu}{1-\mu}\right)$</td>
<td>$\mu = \text{sigm}(\theta)$</td>
</tr>
<tr>
<td>Poi(μ)</td>
<td>log</td>
<td>$\theta = \log(\mu)$</td>
<td>$\mu = e^\theta$</td>
</tr>
</tbody>
</table>

\[w \quad \eta_i \quad g^{-1} \quad \mu_i \quad \Psi \quad \theta_i \]

\[x_i \quad g \quad \Psi^{-1} \]
Whiteboard

• MLE with GLM with Canonical response
MLE for GLMs with canonical response

• Log-likelihood

$$\mathcal{L}(w) = \sum_i \log h(y_i) + \sum_i (y_i w^T x_i - A(\eta_i))$$

• Derivative of Log-likelihood

$$\nabla_w \mathcal{L}(w) = \sum_i \left(x_i y_i - \frac{dA(\eta_i)}{d\eta_i} \frac{d\eta_i}{\theta} \right)$$

$$= \sum_i (y_i - \mu_i) x_i$$

$$= X^T (y - \mu)$$

• Online learning for canonical GLMs

 – Stochastic gradient ascent = least mean squares (LMS) algorithm:

$$w^{t+1} = w^t + \rho (y_i - \mu_i^t) x_i$$

This is a function of w

Step length
Batch learning for canonical GLMs

• The Hessian matrix

\[
H = -\frac{1}{\sigma^2} \sum_{i=1}^{N} \frac{d\mu_i}{d\theta_i} x_i x_i^T = -\frac{1}{\sigma^2} X^T S X
\]

\[
S = \text{diag}(\frac{d\mu_1}{d\theta_1}, \ldots, \frac{d\mu_N}{d\theta_N})
\]

Involves the second derivative of \(A(\theta) \)
Iteratively Reweighted Least Squares (IRLS)

\[\nabla_w \mathcal{L}(w) = X^T(y - \mu) \]

\[H = -\frac{1}{\sigma^2} \sum_{i=1}^{N} \frac{d\mu_i}{d\theta_i} x_i x_i^T = -\frac{1}{\sigma^2} X^T S X \]

- Recall Newton-Raphson methods with cost function

\[w^{t+1} = w^t + H^{-1}(w^t) \nabla \mathcal{L}(w^t) \]

\[= (X^T S(w^t) X)^{-1} \left[X^T S(w^t) X w^t + X^T (y - \mu) \right] \]

\[= (X^T S(w^t) X)^{-1} X^T S(w^t) z^t \]

\[z^t = X w^t + S(w^t)^{-1} (y - \mu^t) \]
Iteratively Reweighted Least Squares (IRLS)

\[\nabla_w \mathcal{L}(w) = X^T(y - \mu) \]

\[H = -\frac{1}{\sigma^2} \sum_{i=1}^{N} \frac{d\mu_i}{d\theta_i} x_i x_i^T = -\frac{1}{\sigma^2} X^T S X \]

- Recall Newton-Raphson methods with cost function

\[w^{t+1} = w^t + H^{-1}(w^t) \nabla \mathcal{L}(w^t) \]

\[= (X^T S(w^t) X)^{-1} \left[X^T S(w^t) X w^t + X^T (y - \mu) \right] \]

\[= (X^T S(w^t) X)^{-1} X^T S(w^t) z^t \]

\[z^t = X w^t + S(w^t)^{-1} (y - \mu^t) \]

It looks like \((X^T X)^{-1} X^T y\)
Iteratively Reweighted Least Squares (IRLS)

\[\nabla_w \mathcal{L}(w) = X^T (y - \mu) \]

\[H = -\frac{1}{\sigma^2} \sum_{i=1}^{N} \frac{d\mu_i}{d\theta_i} x_i x_i^T = -\frac{1}{\sigma^2} X^T S X \]

- Recall Newton-Raphson methods with cost function

\[
\begin{align*}
w^{t+1} &= w^t + H^{-1}(w^t) \nabla \mathcal{L}(w^t) \\
 &= (X^T S(w^t) X)^{-1} [X^T S(w^t) X w^t + X^T (y - \mu)] \\
 &= (X^T S(w^t) X)^{-1} X^T S(w^t) z^t \\
 &= X w^t + S(w^t)^{-1} (y - \mu^t)
\end{align*}
\]

- This can be understood as solving the following "Iteratively reweighted least squares" problem

\[
w^{t+1} = \arg \max_w (z^t - Xw)^T S(w^t) (z^t - Xw)\]
Examples

$$\nabla_w \mathcal{L}(w) = X^T(y - \mu)$$

$$H = -\frac{1}{\sigma^2} \sum_{i=1}^{N} \frac{d \mu_i}{d \theta_i} x_i x_i^T = -\frac{1}{\sigma^2} X^T S X$$

• Recall Newton-Raphson methods with cost function

$$w^{t+1} = w^t + H^{-1}(w^t) \nabla \mathcal{L}(w^t)$$

$$= (X^T S(w^t) X)^{-1} \left[X^T S(w^t) X w^t + X^T (y - \mu) \right]$$

$$= (X^T S(w^t) X)^{-1} X^T S(w^t) z^t$$

$$z^t = X w^t + S(w^t)^{-1} (y - \mu^t)$$

$$w^{t+1} = \arg \max_w (z^t - X w)^T S(w^t) (z^t - X w)$$
Practical Issues

• It is very common to use regularized maximum likelihood.

\[
p(y = \pm 1 | x, \theta) = \frac{1}{1 + e^{-y \theta^T x}} = \sigma(y \theta^T x)
\]

\[
p(\theta) \sim \text{Normal}(0, \lambda^{-1} I)
\]

\[
l(\theta) = \sum_n \log(\sigma(y_n \theta^T x_n)) - \frac{\lambda}{2} \theta^T \theta
\]

– IRLS takes \(O(N d^3)\) per iteration, where \(N\) = number of training cases and \(d\) = dimension of input \(x\).

– Quasi-Newton methods, that approximate the Hessian, work faster.

– Conjugate gradient takes \(O(Nd)\) per iteration, and usually works best in practice.

– Stochastic gradient descent can also be used if \(N\) is large c.f. perceptron rule.
Today’s Lecture

1. Exponential Family Distributions
 A candidate for marginal distributions, $p(X_i)$

2. Generalized Linear Models
 Convenient form for conditional distributions, $p(X_j \mid X_i)$

3. Learning Fully Observed Bayes Nets
 Easy thanks to decomposability
3. LEARNING FULLY OBSERVED BNS

Easy thanks to decomposability
Simple GMs are the building blocks of complex BNs

Density estimation
- Parametric and nonparametric methods

Regression
- Linear, conditional mixture, nonparametric

Classification
- Generative and discriminative approach
Decomposable likelihood of a BN

- Consider the distribution defined by the directed acyclic GM:

\[p(x \mid \theta) = p(x_1 \mid \theta_1)p(x_2 \mid x_1, \theta_2)p(x_3 \mid x_1, \theta_3)p(x_4 \mid x_2, x_3, \theta_4) \]

- This is exactly like learning four separate small BNs, each of which consists of a node and its parents.
Learning Fully Observed BNs

\[\mathbf{\theta}^* = \arg\max_{\theta} \log p(X_1, X_2, X_3, X_4, X_5) \]

\[= \arg\max_{\theta} \log p(X_5|X_3, \theta_5) + \log p(X_4|X_2, X_3, \theta_4) \]

\[+ \log p(X_3|\theta_3) + \log p(X_2|X_1, \theta_2) \]

\[+ \log p(X_1|\theta_1) \]

\[\theta_1^* = \arg\max_{\theta_1} \log p(X_1|\theta_1) \]

\[\theta_2^* = \arg\max_{\theta_2} \log p(X_2|X_1, \theta_2) \]

\[\theta_3^* = \arg\max_{\theta_3} \log p(X_3|\theta_3) \]

\[\theta_4^* = \arg\max_{\theta_4} \log p(X_4|X_2, X_3, \theta_4) \]

\[\theta_5^* = \arg\max_{\theta_5} \log p(X_5|X_3, \theta_5) \]
Summary

1. **Exponential Family Distributions**
 - A candidate for marginal distributions, $p(X_i)$
 - Examples: Multinomial, Dirichlet, Gaussian, Gamma, Poisson
 - MLE has closed form solution
 - Bayesian estimation easy with conjugate priors
 - Sufficient statistics by inspection

2. **Generalized Linear Models**
 - Convenient form for conditional distributions, $p(X_j | X_i)$
 - Special case: GLIMs with canonical response
 - Output y follows an exponential family
 - Input x introduced via a linear combination
 - MLE for GLIMs with canonical response by SGD
 - In general, Bayesian estimation relies on approximations

3. **Learning Fully Observed Bayes Nets**
 - Easy thanks to decomposability